Ylang ylang extracts

CAS-No.:	$8006-81-3$ $68606-83-7$ The scope of this Standard includes, but is not limited to the CAS number(s) indicated above; any other CAS number(s) used to identify these fragrance ingredients should be considered in scope as well.
Synonyms:	Cananga odorata (Lamark) (Hooker et Thompson) (Anonaceae) Cananga odorata extract Cananga odorata flower oil Cananga odorata oil Cananga oil Ylang ylang oil (Cananga odorata Hook. f. and Thomas) Ylang ylang oil extra Ylang ylang oil I Ylang ylang oil II Ylang ylang oil III Ylang ylang, Cananga odorata, ext.

History:	Publication date:	2020 (Amendment 49)	Previous Publications:	2008

Implementation dates:	For new creation*:	February 10, 2021
	For existing creation*:	February 10, 2022
	*These dates apply to the supply of fragrance mixtures (formulas) only, not to the finished consumer products in the marketplace.	

MAXIMUM ACCEPTABLE CONCENTRATIONS IN THE FINISHED PRODUCT (\%):

Category 1	0.13%	Category 7A	1.5%
Category 2	0.039%	Category 7B	1.5%
Category 3	0.78%	Category 8	0.077 \%
Category 4	0.73%	Category 9	1.4%
Category 5A	0.18%	Category 10A	5.1%
Category 5B	0.18%	Category 10B	5.1%

Ylang ylang extracts

Category 5C	0.18%	Category 11A	2.8%
Category 5D	0.18%	Category 11B	2.8%
Category 6	0.43%	Category 12	No Restriction

FLAVOR REQUIREMENTS:

Due to the possible ingestion of small amounts of fragrance ingredients from their use in products in Categories 1 and 6 , materials must not only comply with IFRA Standards but must also be recognized as safe as a flavoring ingredient as defined by the IOFI Code of Practice (www.iofi.org). For more details see chapter 1 of the Guidance for the use of IFRA Standards.

CONTRIBUTIONS FROM OTHER SOURCES:

NONE TO CONSIDER BEYOND TRACES (SEE ALSO THE SECTION ON CONTRIBUTIONS FROM OTHER SOURCES IN CHAPTER 1 OF THE GUIDANCE FOR THE USE OF IFRA STANDARDS)

INTRINSIC PROPERTY DRIVING RISK DERMAL SENSITIZATION MANAGEMENT:

RIFM SUMMARIES:

Maximum acceptable concentrations are based on a comprehensive safety assessment, considering various endpoints. Depending on the outcome of the safety assessment, it might be one or more endpoint(s) that will drive the derivation of the concentration levels. If more than one endpoint is of relevance, the maximum acceptable concentrations for each product category are derived from comparing maximum permitted level per endpoint consideration (e.g. dermal sensitization and/or systemic toxicity). Such maximum acceptable concentrations correspond to the lowest level obtained per category.

Additional information is available in the RIFM safety assessment for Ylang ylang extracts, which can be downloaded from the RIFM Fragrance Material Safety Assessment Center: http://fragrancematerialsafetyresource.elsevier.com/.

EXPERT PANEL FOR FRAGRANCE SAFETY RATIONALE / CONCLUSION:

The Expert Panel for Fragrance Safety reviewed all the available data for Ylang ylang extracts and recommends the concentrations for the 12 different product categories, which are the maximum acceptable concentrations of Ylang ylang extracts in the various product categories.

REFERENCES:

The IFRA Standard on Ylang ylang extracts is based on at least one of the following publications:

- The RIFM Safety Assessment on Ylang ylang extracts if available at the RIFM Fragrance Material Safety

Ylang ylang extracts

Assessment Center: http://fragrancematerialsafetyresource.elsevier.com

- Api A.M., Belsito D., Bruze M., Cadby P., Calow P., Dagli M. L., Dekant W., Dent M., Ellis G., Fryer A. D., Fukayama M., Griem P., Hickey C., Kromidas L., Lalko J., Liebler D.C., Miyachi Y., Politano V.T., Renskers K., Ritacco G., Salvito D., Schultz T.W., Sipes I. G., Smith B., Vitale D., Wilcox D.K. (2015). Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients. Food Chem Toxicol. 2015 Aug;82 Suppl:S1-S19 (http://fragrancematerialsafetyresource.elsevier.com/sites/default/files/Criteria_Document_Final.pdf).
- Salvito D.T., Senna R. J., Federle T.W. (2002). A framework for prioritizing fragrance materials for aquatic risk assessment. Environ Toxicol Chem. 2002;21:1301-1308 (https://www.ncbi.nlm.nih.gov/pubmed/12069318).

Additional information on the application of IFRA Standards is available in the Guidance for the use of IFRA Standards, publicly available at www.ifrafragrance.org.

